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An asymptotic solution to the problem of laminar convection of heat over 

a linear source of heat is given. It would appear that Zeldovich [l 1 was 

the first to deal with this problem. In 1937 he obtained formulas for the 

longitudinal velocity component and liquid temperature from dimensional 

considerations, without even solving the convection equations. 

1. Basic Problem and its Equations. We deal with the problem of steady 

thermal convection of a liquid over an infinitely long straight hori- 

zontal heated wire or thread. 

The heat emitted by the thread causes nonuniform heating of the liquid 

surrounding it, which leads to the convective movement of the liquid. The 

liquid flows in the form of a rising laminar jet which expands with height. 

When a certain height is attained the laminar flow breaks down and is re- 

placed by mixing and turbulence. 

In studying the laminar flow we may use existing knowledge of the 

effect of large velocity and temperature gradients transverse to the jet, 

a characteristic feature of the boundary layer close to a wall. 

The equations of free convection can therefore be simplified consider- 

ably 12 1 by making use of the approximations in boundary layer theory. 

They may be written 

(vvjv==--_v ~~+~Av--gglZ’~, vvT’ = %AT’, divv=O (1.1) 

Here v is the velocity, T and p’ are the deviations in temperature and 

pressure from their equilibrium values, p is the liquid density. g. gravity, 

fl is the coefficient of thermal expansion, u and x are the coefficients of 

viscosity and conductivity of the liquid. The differential equations of 
motion of the jet can be written; 
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Here, a and v are the velocity components of the fluid along the axes 
of x and y (I is vertically upwards in the plane of symmetry of the jet, 
y is transverse to the jet, and z is in the direction of the source). The 
term containing the pressure is omitted because the pressure only changes 
in the direction of the jet and equals the hydrostatic pressure p(x), and 
therefore p’ = 0. 

We solve equations (1.2) under the following boundary conditions: 

au ilT 
u=Q, ---0, -=o 

aY - aY 
for ?I =O (1.3) 

u = 0, T=O for !/ =a (1.4) 

The last two conditions (1.3) express the fact that the plane xz is a 
plane of flow symmetry. 

We nor introduce a quantity representing the strength of the source, 
for example, the quantity of heat Q emitted per unit time by unit length 
of thread. Then we express the constant heat flux across any horizontal 
plane in the form (molecular heat transfer is neglected); 

Q = 2cp 7 uTdy = const (1.5) 
0 

Here c is the specific heat of the liquid. We can introduce the stream 
function 1/1 by means of the equation of continuity, 

lA=l3+/&/, 12=-a+:ax (1.5) 

There is no characteristic length in this problem. It seems natural 
therefore to assume that the profiles of velocity u(x, y) and temperature 
T(r, yl are geometrically similar, i.e. they can be made to coincide in 
any sections of the flow x = constant, if suitable scales are chosen for 
II, T and y. 

Bearing this in mind, and assuming that the terms in the first of 
equations (1.2) are of the same order of magnitude, and also assuming 
that the heat emitted Q is independent of I, we seek solutions for the 
stream function and temperature in the form 

Here n is a nondimensional coordinate and f and $I are nondimensional 
functions. 
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The f:ctors are chosen to simplify the equations in the transformations 
which follow below. 

Substituting (1.6) and (1.8) in (1.2). we arrive at a system of ordi- 
nary differential equations for the functions f and 4, 

j” + 3ff” = j’a - ‘p, 36 (fg)’ = - ‘p” 
( 

v\ 
==Xl (1.9) 

where u Is the Prandtl number, and a prime denotes differentiation with 
respect to rl. 

Boundary conditions (1.3) and (1.4) in the new variables are 
f= f’z0, p’=O for r) = 0 

j’ = 0, ql=o for rl= 03 

(1.10) 

(i.ii) 

2. Integration of the Equations. we begin by integrating the second 
equation (1.9) twice. Using boundary conditions (1.10) the integrated 
equation can be written 

(2.1) 

where 4, 

If we 

= 4(O), a magnitude to be evaluated later. 

substitute (2.1) in the first equation (1.9) we obtain 

1”’ + 3ff” = f’* - ‘pO exp (- 30 1 f&) 
0 

(2.2) 

We seek a solution of this equation in the form of a power series; 
OD 

(2.3) 

Using the boundary conditions (1.10) for ~7 = 0 we immediately find 
that, a0 = a2 = 0. If we substitute (2.3) in (2.2) and equate coefficients 
of like powers of n in both sides of the equations. we can express all 
the coefficients of the series (2.3) in terms of ai. = a and $0; 

as = a2 - pp, a, = 0, a5 = 3uq,n - 4a (a2 - co), 46 = 0 (2.4) 
a, = 34~4 - a*p, (28 + 27s -j- 27~~) - 3P,? (2 + a), . . . 

The fact that all the coefficients of even powers are zero can also 
be explained as follows. The function f’(q), which is proportional to 
the velocity u. must be an even function of variable r), and therefore f 

is odd, so that coefficients of even powers of 9 in (2.3) aust be zero. 
Series (2.3) can be written 

f = i “2nt1 

n_o (2n+ I)1 +“+l 
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Treating (2.2) as a linear nonhomogeneous equation in f” and its 
derivative, and noting that f’<O) = 0, we obtain the solution 

f”=e -eFw (IJ (3 (2.6) 

where 

1 II 

p (?) = - fh, 
s 

@ (r)) Z 
s 

(f’s _ (p# --9aF (1)) esF(*)+ (27) 

0 0 

TO satisry boundary condition (1.11) we integrate (2.6) from 0 to 00 , 
and obtain; 

or 

OD 
f’ (00) - j’ O)= 

s 
,-WI) * Q (Q 

0 

* 

s 
e -3F(")Q)(q)dr] = -_a 

0 

(28) 

He get the second equation with the same unknowns a and &, from condi- 
tion (1.5). which, in terms of variables f, 4, r) takes *he form: 

(2.9) 

0 

The integrals (2.8) and (2.9) cannot be expressed in terms of elementary 
iunctions but can, in certain cases, be expanded asymptotically using an 
iterative method. 

In this case F(u) is a positive function nhlch tends monotonically to 
infinity together with u, and possesses a stationary point u = 0. The 
functions f’(q) and @(I)) are smooth. It is possible to use this iterative 
method, therefore, ror the approximate integration of (2.8) and (2.9). 
The method is similar to that used by Watson [ 3 1 and by Yeksyn 14 1 for 
integrating the boundary layer equations. 

The method of working out integrals (2.8) and (2.9) involves a ner 
variable of integration r, where 

F h) = T (2.10) 

or. replacing F(u) by the power series, given by (2.7) 

(2.11) 

We nou invert the series (2.11). Using known formulas obtained from 
Dwight’s handbook [5 1 for the coefficients, we first of all find the 
expression 
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? ‘= (~)-lr-~(~~-srt+~(LII - ao5)(;)-%- 

- & (3a5a7 - 7oaa5a5 + 1750 a* ) (” -’ ,2 ++...I 
> 

(2.12) 

and then find 11, 

~=(~)-“:‘~~[*-~i;)-‘~+2~(~5”~a5)(q)~~5+...] (2.13) 

substituting (2.12) in the seriee f’ = we obtain 

1’ z 
i a -3 

7 +qjj-(aa5 -a~*) y 0 
+ + 

+ & (a*a, - 6aa5a5 + Sa5*) -5T5 + . . . (2.14) 

It only remain8 to transform the function @(II) to the new variable. We 
u8e equation (2.6) to do this. rewriting it in the form 

Let us put 

df’ - = e- s7 
drl 

dr WI) & (2.15) 

9) 
Q (7j) 2 = 2 b,J+-1) (2.16) 

m-i 

Substituting (2.14) and (2.16) in equation (2.15) and equating coeffi- 
cients of equal Dower8 of r on both aides, we find; 

+(a1 - cpd, br=O, [4a4 + 3a2y,, (d - I) - q02] b5 = 0 

b5 = -&=j- (+)-5(4&z’ - 46a5cp, $ 

+ 15ua2tpos - 59,*) 

Thus, in order to integrate (2.8) we 
OD CD 

5 
c --aFWq, (q) d,, = e-S+ 

7 x 
b T+(m+l)_l 
m 

0 0 m-l 

45aaa(po -27a2a4(po + 3a5(po2 + 

bs = 0, . . . 

have 
Q) 

dT= 2 b,3+r 
m-1 

(2.17) 

(2.18) 

where r is the Gamma function. Substituting (2.18) in (2.8) we get 

i bm3-* rtrnq>= -a (2.19) 

m-i 

Using (2.13) end (2.14) we find the integral (2.9) in a similar 

manner: with the result 

‘PO ; 

m+1 

cm(W 1 (2.20) 
m-o 
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where 

GI = 0, 
--‘I* 

cg = i es=0 

i 
’ c4=- 7 0 -“‘[- 245ad + 1Op$, (33 + 123 - 85qQ], cs = 0, . . . (2.21) 

In our case it appears that the series (2.191 and (2.20) converge 
rapidly, and therefore a sufficiently good approximation for a and $ 
can be obtained by using three or four terms of the series. 

We therefore arrive at the solution which roraall~ satisfies all the 
boundary conditions in the form of the series 

f = a? + $ (a’- cpo) q*+ 1& &a% - 4fa (a2 - ‘PO)] 15+ 

+A [34a4 - u2~~(~ + 27a + 27a8) - 391,’ (2 + a)] q7 + . . . (2.22) 

‘p = ‘PO{1 -+aaaqs+ $a wJ-~)~2+cpol rl’- & au [45aa2 (3 0 -1) + 

+4p0(12a+1)-44a2]$+... } (2.23) 

The solution to our problem has only limited application. In the first 
place it cannot be applied In the immediate vicinity of the source. Any 
real source has finite thickness and this solution only begins to be 
valid at a distance from the source where its dimensions do not signific- 
antly affect the flow of the fluid. Secondly, the flow becomes turbulent 
at some given height. 
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